A L

Yo

A

S 1".“‘? . 7 ! /’U "— -3 %

e

A TRANSPORT MODEL OF THE TURBULENT
SCALAR-VELOCITY
May 1987

R. S. Amano
Principal Investigator

and

P. Goel and J. C. Chai
Research Assistants

Department of Mechanical Engineering
University of Wisconsin--Milwaukee
Milwaukee, Wisconsin 53201
U.S.A.

Status Report

(NASA-CE-1806(5) A TRANSFGCRT MCDEL OF THE N87-22160
TURBULENT SCALAE-VELOCITY Status Report,

Feb. - May 1987 (wiscopsin Uriv.) 42 P

Avail: NTIS HC 2a03/MF AOQ1 CSCL 20D Unclas

G3/34 0071794

The report documents research completed during the period of February 1987
through May 1987 under NASA-Marshall Space Flight Center Research Grant No.
NAG 8-617.

332E/3389¢L




ABSTRACT

This study represents performance tests of the third-order turbulence
closure for predictions of separating and recirculating flows in
backward-facing step. Computations of the momentum and temperature fields in
the flow domain being considered entail the solution of the time-averaged
transport equations containing the second-order turbulent fluctuating
products. The triple products, which are responsible for the diffusive
transport of the second-order products, attain greater significance in
separating and reattaching flows. Formulations have been made for those
products mentioned above by developing each corresponding transport equation.
A low Reynolds number model associated with the viscous effect in near-wall
regions is developed and incorporated.

The computations are compared with several algebraic models and with the
experimental data. The predication has been improved considerably,
particularly in the separated shear layer.

Computations are further made for the temperature-velocity double
products and triple products. Although there is not any appropriate
experimental data to compare, the present computations are compared to the
results obtained by solving the several existing algebraic correlations. The
agreement between these sets is shown to be quite reasonab]g.

Finally, several advantages have been observed in the usage of the
transport equations for the evaluation of the turbulence triple products; one
of the most important features is that the transport model can always take the
effects of convection and diffusion into account in strong convective shear
flows such as reattaching separated layers while conventional algebraic models

cannot account for these effects in the evaluation of turbulence variables.
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NOMENCLATURE

2

wall skin friction coefficient, Tw/(]/Z)pUIN

constant used in turbulence model

coefficients for the pressure-heat flux term in the transport
equation of <u,6>

ﬁoefficients in the algebraic expressions for <u.0>
coefficients for the pressure-stress and the near-wall
low-Reynolds number model of the transport equations of
<uiujuk>

coefficient for the dissipation rate in the transport
equations of <uiujuk>

coefficient for the determination of turbulent viscosity
(= 0.09)

coefficient for the pressure-heat flux term in the transport
equation of <uiuje>

coefficient for the dissipation rate in the transport
equation of <ui"j°>

specific heat of fluid

wall static pressure coefficient, (Pw - PIN)/(]/Z)pU§N
depth of the channel (Y0 + H)

diffusion rate of Reynolds stresses, <uiuj>

diffusion rate of triple-velocity products, <uiujuk>
diffusion rate of the heat flux, <u,6>

diffusion rate of the triple products of velocity and
temperature, <uiu.e>

J
step height
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ijk,1

ijk,2

ie

Pije.1

ije,2

Pr

turbulent kinetic energy
pressure fluctuation
mean pressure

production rate of Reynolds stresses, <uiuj>

production rate of triple velocity products, <uiu.uk>, due to
mean strain rates J

production rate of triple velocity products, <uiujuk> , due to
interaction of the Reynolds stresses with their gradients
production rate of <uie>

production rate of <“iuj°> due to mean strain rates
and temperature gradients

production rate of <uiuj9> due to Reynolds stresses
and the heat fluxes interacting with their gradients
molecular Prandtl number

turbulent Prandtl number

wall heat flux per unit area

mean temperature

inlet stream temperature

fluctuating velocity in x-direction

mean velocity in x-direction

inlet stream velocity

fluctuating velocity in y-direction

mean velocity in y-direction

reattaching point

normalized coordinate = (x - xr)/xr

Cartesian coordinates

normal distance from the wall

height of the channel upstream of the step
_2_




Greek Symbols

a

6ij

€

ij

ij,w

ije

thermal diffusivity

Kronecker delta

dissipation rate of turbulent kinetic energy

dissipation rate of Reynolds stresses, <ui”juk>
dissipation rate of triple-velocity products, <uiujuk>
dissipation rate of the turbulent heat flux, <uie>
dissipation rate of third moments of velocity and
temperature, <uiuje>

fluctuating component of temperature

dynamic viscosity

turbulent viscosity (= Cvpkz/c)

kinematic viscosity

density of the fluid

shear stress

pressure-strain redistribution for Reynolds stresses,
<uiuj>

near-wall effects in the pressure-strain redistribution for
Reynolds stresses, <uiuj>

pressure-stress correlation for triple-velocity products,
<uiujuk>

pressure-stress correlation of the near-wall low-Reynolds
number effect for triple-velocity products, <uiujuk>
pressure-heat flux correlation for <uie>

near-wall effects in the pressure-heat flux correlation for
<u,6>

pressure-heat flux correlation for the triple products,




Subscripts

ij.k,2,m,n tensor notations

W wall values

IN inlet station (x/H = -4) condition
Symbols

< > time-averaged values



INTRODUCTION

Separation and recirculation of flow is encountered in a vast array of
engineering applications. This phenomenon of flow separation and recircula-
tion associates itself with higher turbulence levels which not only render the
flow greater analytical complexity but also result in augmenting its heat
transfer and momentum aspects considerably.

Current research in this area is mainly limited to experimental measure-
ments of the hydrodynamic characteristics along with the heat transfer
coefficients in the flow domain. Computation of the temperature field in the
flow domain entails the solution of the time averaged temperature equation
containing the turbulence fluctuating velocity-temperature products. These
second moments or double products are correlated in terms of Boussinesq's
isotropic viscosity and the turbulent Prandt] number in order to close and
solve the temperature equation. However, as pointed out by Launder and
Samaraweera,] the second-moment mode]l is more preferable because turbulent
interactions which generate the turbulence stresses and heat fluxes can be
treated exactly. They applied an algebraic second-moment turbulence closure
to heat and mass transport in thin shear flows and obtained good results.

Algebraic turbulence scalar-velocity models containing the curvature and
gravitational effects have been proposed and used by Tahry et a1.2 and
Gibson3 for predicting the heat fluxes in turbulent shear flows and boundary
layer flows.

The third moments, which are responsible for the diffusive transport of
the second moments, attain greater significance in recirculating flows, as
pointed out by Chandrsuda and Bradshaw4; these also have not been given much
attention and, therefore, need to be examined in greater detail in order to

fully understand and comprehend the turbulent transport mechanisms.
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Owing to the relative complexity commonly encountered in recirculating
flows, experimental measurements of the second and third moments, hence, pose
a formidable challenge. 0ta and Kon5 report uncertainties of up to 50% in
their measurements of second moments in the reattachment region using conven-
tional hot wire instruments; similar measurements were made by Seki et a].6
Vogel and Eaton7 and Adams et a1.8 made extensive measurements of the
thermal and mass fluxes using LDAs. Experimental information on the behavior
of the triple products of scalar-velocity fluctuations is almost nonexistent.
Andreopoulos and Bradshawg, however, present the variation of the triple
products for a flow over a boundary layer using constant temperature
anemometers and Antonia]0 presents those for a plane jet.

The study undertaken and presented here solves the flow into a backward-
facing step geometry. After obtaining a good agreement for the hydrodynamic
parameters, the thermal variables are solved. The transport equations of the
turbulence scalar-velocity products, <u;6> and <u1uje>, are
developed and solved to obtain their profiles in recirculating and

redeveloping flow regions beyond the step.
MATHEMATICAL MODELS

The transport equation for the Reynolds stresses is given as

2 = -
ax, (U <U3U57) = Pig =gy +oig * egy + Dy
where Pij’ ¢ij , and ¢ij,w’ respectively, represent the production,

pressure-strain, and the wall correlation for pressure-strain rates. These
are all defined by Launder et a1.1]

The diffusion rate, Dij' contains the terms given as follows

(M



3 <uip> <uy.p>
= - — |[<u.u.u, > — 4.
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(2)

Since the diffusion rate of the Reynolds stresses is governed by the gradient

of the third moments <u.u.

i jk?

third moments accurately.

u, >

it becomes necessary to evaluate the

The third moments, <uiujuk>, can be evaluated by formulating their

transport equation as
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In order to account for the viscous effects that are predominant near the

wall, a low-Reynolds number modification needs to be incorporated in the

transport equations of the third moments.

The theory behind this low-Reynolds number modeling is based upon the
existence of the viscous sublayer, the buffer layer and the fully turbulent

core in the near-wall region. The profiles of the energy dissipation rate ¢

are accounted for in all three layers, and the pressure-stress correlation is

modified accordingly.

Finally, the transport equation for <uju.u > containing the low-

1]
Reynolds number effect is given as

a_:—!(uo. 345U = Pagigt Pt faak t gk,
* o5kt ik
where
Pijk,] = production due to mean strains
= -Cg(<uiuju2> ;;; + <"j"k”g> ;;i + <uju.up> ;;i)

Pijk 2 = Production due to Reynolds stresses interacting with their

gradients
o<u.u.> o<u.u, > o<y, u.>
kL axl iy axl L axl

ijk 5Kk .w = Pressure-stress term including the low-Reynolds

number effect.

(4)

(5)

(6)




i CY <U1:-Uk> (c + max [CYN %333 2w (35;/2)2]} (7
€33k = Dissipation due to viscous action
= c,. % (855 + 85 * 8q) ¢ K'/2 (8)
and Dijk = Diffusion rate
= 5%; (v 5%; <uiujuk>) (9)

The values of the constants are listed in Table 1.

The model given by Eq. (7) was originally tested by Amano et a1.]2
where it was shown that the addition of the bracketed term remarkably improves
the prediction of <uiujuk> in the near-wall region.

Table 1. Recommended values for the constants used
in turbulence modeling.

c c c C

¢ c c C C. 2T oy oc

g Y W ey ie,] ¢

ie,2 IT

1.0 3.0 8.0 0.10 3.2 0.5 0.313 0.156 6.0 0.70

The Reynolds-stress closure is consolidated by incorporating the equa-
tions of k and ¢ and the transport equations of the third moments, <uiujuk>,
into the Reynolds-stress equations.

The temperature field is obtained by solving the time-averaged tempera-

ture equation given as

au.T

i _1 2 Yt aT

= (A= + 57 £
axj P axj Pr Prt axj

(10)



where Prt = turbulent Prandtl number (= 0.9).

In order to obtain the second moments of temperature, <uie>, their
transport equation is formulated and various terms in it are then approximated
through closures.

The transport equation for <uie> after neglecting insignificant terms

can be written as

au.
38 - _ al _1
ax, (Uj <U30>) = - [<ujus> S5+ <us6> =
J J J
(1)
+ 2 [(a + V) 2 <y,06> - <u.u.6>]
X 3X. i it
J J
(I1)
ou.
p 36 30 i
+<——>—(a+\))<_—’>
X, IX. OX.
P 9%y i %%
(IID) (1V) (11)
which can be written as
a — -
axj (Uj<uie>) = Pie + Die + ¢1e €ie {12)
where
Pie = Production rate of <uie>
Die = Diffusion rate of <uie>
¢19 = Pressure-heat flux effects
and 5o = Dissipation of <uie.>

Pie (Term (I)) needs no further approximation since it is explicit in

its character.
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The diffusive rates which are comprised of the triple products

<uiuje> are modeled by decomposing the third moments into the second

moments as shown by Launder,]3

K o<u.6>
<uiuje> =-0.15 (2 :) <ujul> ax& ]

Thus, the diffusion is now given as

a<uy, 6> o<u.6>
s i% 0,30k
Dig = ax; [(é *v) ax; P SUyug? ax, ]

The pressure-heat flux term can be expressed as]3

an
<u, 6> —

€
- = <y.e> .
¢ u1e + C16,2 L axm

¢ij9 = 7 Yie,1 k

The dissipation rate, g is assumed to be negligible in accor-
dance with the assumptions made in the Reynolds-stress closures.

Samaraweera] also propose a near-wall correction term ¢.

added to the pressure-heat flux term, bigr

au. aU!

which is given as

= - £ _ 1 _
¢ie,w = [- 0.10 K <uie> 0.02 <uie> {4 ax,  ax;

where xn is the distance from the wall.

(13)

(14)

(15)

Launder and

(16)

Algebraic expressions to model the second moments are also developed by

amn

Launder 14 which after neglecting the gravitational effects can be expressed
as
ou.
- k aT_ k 1
- <u16> - C]T € <uku1> ax. ¥ CZT € <uk9> X

k k
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In order to evaluate the third moments of temperature, <u1uje>. it

is necessary to formulate their transport equation. This is given as follows:

aT ay; auy
5;— (U <u, uJe>) = - [<u1uJuk> ax t <uJuke> YR <uku1e> P ]
k Xy k k
(1)
2 -
- [<u, uJ axk (u 6 - <u e>)> + <u1e ax, (u. uk <ujuk>)>
+ <uJe 5;; (uku ku :>)>]
(I1)
u.oe u.o
T
ax. x.
J i
(III)
u _dl du
- [<u;u; 2 ax )t <ui® 3 ( )> + <us6 =~ (2 —1>]
i) axk axk axk P k J paxk
(1v) (18)
where
Term (I) = Production due to mean strain rate and temperature gradients
Term (II) = Production rate due to the interaction of the Reynolds
stresses and their gradients with the heat flux components
<uie> and <uje>.
Term (III) = Pressure-heat flux effects
Term (IV) = Diffusion and dissipative effects due to molecular viscosity.

In closing the above equation, Term (I) needs no further approximation
since it is rather explicit in its form. Term (II) can be rearranged and

written as:
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a<u, 6> a<u.u, > a<u u.>

_ K ] k k1 9
Term (II) = <u1uj> ax t <uie> x + <uje> X X (<uiujuke>)
k k k k
(19)
The quadruple term is assumed to be Gaussian and can be split up as
<uiujuke> = <u1uj>-<uke> + <"j"k>'<uie> + <ukui>-<uje> (20)
Differentiating Eq. (20) with respect to Xy and substituting the result in
£g. (19) yields
a<u, 06> a<u.e> a<u.u.>
= - - N R 1]
Term (II) = <ujuk> axk <ukui> axk <uke> axk (21)

The pressure-heat flux effects of Term (III) can be approximated by first
forming the Poisson equation for fluctuating pressure and then approximating
the term by a simplified closure.

The Poisson equation for fluctuating pressure is

2 2au aU

1 3p 3 m
= = = | {——— (u,u_ - <u . u >) + -——} dx (22)
P X,y ax X Lm Lm Xy X L
After multiplying u.e and time averaging with suitable approximation,
this may be given as
u o Yn® ap c aul
p axl> = - C]<u u26> t C2<u une> 5;— (23)
where C] and C2 are arbitrary constants.
Based upon this approximation, Term (III) is thus correlated as
“i®a  _ M e, c
Term (III) = - <T axJ> - < > ax > = (:.I <u1.uje> Py
aU"I __]_ [
+ G, [<u3uke> 5;; + <y, u.e> ] = Cy y SUsU59> | (24)

_]3_



where the second term in Eq. (24) is merged into Term (1) and the coefficient
CeY adjusted accordingly. (The value of CeY has to be determined
by parametric testing.)

Term (IV) contains the diffusive and dissipative effects due to molecular

viscosity. This may be rearranged as

8 (.9
Term (IV) = (a + 2v) P {ax <uiuje>}
k k
] 932 *
u.u. u.u.
- a [2( 8_9_ _1.]_) + <._._1..1 >]
ax ax 2
k k axk
2 *
ou. o9u.o u.o9 u.o
- v [2<a x> < A2L>]
Xy k ax
k
9 ou.o 32 6*
u, du, u
i i
- v [2<—l > + <u >] (25)
axk axk J aka

The first term in Eq. (25) represents the laminar diffusion while the
rest of the terms express the dissipative effects. The terms with the
asterisk (*) consist of second derivatives of the second moments and are
assumed to be negligible. The effect of neglecting the terms is adjusted by
manipulating the value of the empirical coefficients used in the modeling.

The dissipative effects of Term (IV) in Eq. (25) are further assumed to be

_ k dc _
€ijo = Coc o (U axk) (26)

The final form of the transport equation for <“iuj°> is now written as

2 (U <ujuse>) = P (27)

axk Di

ije,1 ¥ Pije,2 * Dije * ®ije T Cije
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where

au.
- - aT 1 _dl
Pije,l - [<u1uJuk> axk * <uJuke> axk * <uku 19> ]
o<u.o6> o<uy.o> a<uiu.>
Pije,z =7 [<ujuk> X, + <ukui> axk + <uke> X, ]
D.. = [(a + 2v) _g_ <u u.0>]
ije ax i
k Xy
= -C,. £<y,u.e>
*ij0 = oy k “YiYj
and
- [4 de
i = Coc k <U® ax,

In addition to the transport equation for <“i”j°>' the existing

algebraic correlations are:

1. Launder]3
2K o<u.6> o<u.o6>
<”i”j9> =-0.10 P (<u1u2> axl + <uju1> ax
15
2. MWyngaard and Cote
2k o<u.6>
16
3. Donaldson et al.
2 o<u;e> o<u.6>
_ 4k 1 3
<uiuje> = - 0.10 . ( axj + axi )

SOLUTION PROCEDURE

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

The computation was performed using a 62 x 62 variable grid mesh with the

grid expanding linearly at the rate of 2% in the axial direction and at 3% in
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the transverse direction from the step wall. The details of this adoption is
discussed in the next section.
Computations of the transport equations described in the preceding

12 The iterative

section is achieved by using a finite volume method.
procedure is terminated when the maximum value of the relative residual

sources of U, V, and mass balance falls below 1%. However, the computations

of the triple products are terminated when the relative residual sources fall
below 3 x 107° for <ujuju,> and 5.0 X 107? for <uju40>.

This complete process of solving the momentum, temperature and their
related turbulence products equations takes about 60 minutes of CPU time on a
UNIVAC 1100 computer. For the solution of the transport equation of the
temperature and temperature associated moments, boundary conditions had to be
specified at the solid wall and the outflow section of the channel.

For the temperature equation, a constant heat flux of 130 W/m was applied
along the wall downstream of the step. This heat flux was introduced into the
solution domain by supplementing the source term at the wall adjacent cell for
the temperature eguation with this heat flux.

The wall boundary condition for <ue> and <ve> is based upon the fact
that at the wall,

<ue> = <ve> = 0.0. (36)
Therefore, the value of <ve> at the wall adjacent node is fixed by the
interpolation between the wall and the node next to the wa]] adjacent node.
The value of <ue> at the wall adjacent node is set equal to minus twice the
value of <ve> at this node, as pointed out by Launder.13

Since the scalar-velocity products <uiuje> fall to zero at the

wall, their near-wall values, hence, have been accordingly made very small

such that they tend to zero at the wall.
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12 the third moments are fairly stable and

As mentioned in Amano et al.
seem to be affected very little by the choice of the wall boundary treatment.
At the outflow section which is located at a distance of 60H from the step, a
parabolic boundary condition is applied thereby causing the streamwise
gradient of all the parameters (except T) to vanish.

The temperature distribution at the outflow section is prescribed in

accordance with Kays and Crawford]7 wherein

(37)

RESULTS AND DISCUSSION

Figure 1 depicts the flow configuration inside a backward-facing step
geometry. The shear flow separates at the edge of the step and forms a
separated shear layer which causes a part of the fluid to recirculate and the
rest to continue to flow downstream contributing to the stabilization of the
flow through the formation of a boundary layer in the redeveloping region.

Experimental data of Driver and Seegmi]]er]8 has been used for compari-
son with the computational results.

Figures 2 and 3 compare the skin friction coefficient and pressure
coefficient, respectively along the wall downstream of the step with the
experimental data. Computations have been performed with several different
grid systems ranging from 32 x 32 to 62 x 62. It is shown in both figures
that a fair grid independent status is attained with the grid system finer
than 52 x 52. Thus the grid of 62 x 62 has been adopted in this study. It is
further noticed that agreement between the computation and the data is fairly

reasonable.
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Figure 4 compares the mean velocity profiles and Figs. 5, 6, and 7,
respectively, compare the Reynolds stresses <u2>, <v2> and <uv> with the
experimental data. The agreement with the experimental data is generally
satisfactory.

In Figs. 8-11 triple velocity products are compared with the experimental
data of Driver and Seegmiﬂer.]B The results are also compared with several
algebraic models in the literature. As shown in these figures, the levels of
the triple-velocity products are always higher in the shear layer with
employing the transport models than with the algebraic correlations. Thus,
the transport model gives more realistic results in comparison with the data.
The reason for this is that the convective and diffusive effects are accounted
for through the reattaching shear layer with the transport model whereas these
effects are mostly neglected in the algebraic correlations.

Since the physical properties of the fluid are assumed to be invariant
with temperature, hydrodynamic aspects of the flow are independent of its
thermal characteristics. Therefore, the temperature along with its second and
third moments are obtained using the converged stored values of the hydrody-
namic parameters.

Figure 12 shows the nondimensionalized temperature profiles downstream of
the step. These results, comparing the data taken by Eason and Voge],]9
show very satisfactory agreement.

Figures 13 and 14 show respectively the nondimensionalized heat flux
<ue> and <ve> profiles downstream of the step. Results obtained by the
solution of their transport equation (Eq. 12) are compared with the results

obtained by the algebraic correlation (Eq. 17). It is seen that the overall

agreement between the results obtained by the transport equations and the
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algebraic equations is quite reasonable. It is further noticed that the
agreement of <v6> ijs very good in the shear layer but closer to the wall the
algebraic model fails to diminish the levels of <ve>. On the contrary, the
algebraic models tend to make <vo> go to infinity. The transport equations,
however, with the proper imposition of the boundary conditions give more
realistic results.

Profiles of the triple products of velocity and temperature <uiuje>
are shown in Figs. 15-17. Results by solving the transport equations for
<u.u.e> (Egq. 27) are compared with results obtained by the algebraic

1]
correlations for <uiuj6> by Launder]3, Wyngaard and Cote,]5 and

]6: Egs. (33), (34) and (35), respectively.

Donaldson et al.,
There is no experimental data available for validation and comparison
owing to the relative complexity involved in the measurements of double and
triple products (<uie> and <uiuje>) inside wall bounded recirculating flows.
Figure 15 shows the nondimensionalized profiles for <uue>. Predictions
by the three algebraic correlations seem to be very close to one another. The
predictions by the transport equation are the highest particularly in the shear
layer. Although the three algebraic correlations predict similar results, the
model of Launder]3 predicts the highest values and that of Donaldson et

.]6 predicts the lowest. However, the difference among the predictions is

al
very small, particularly near the reattachment region and beyond.

Figure 16 depicts the profiles of <uve>. The prediction by the
algebraic models and the transport equations are very close. The model of
Donaldson et a].]s gives the highest values whereas the model of Wyngaard

and Cote]5 gives the lowest. Predictions by the transport equations are

somewhat intermediate.
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Figure 17 shows the profiles for <vve> obtained by the transport
equation (Eq. 27) and the above mentioned algebraic correlations. The predic-

6 predominate over the others, and

tions by the model of Donaldson et a].]
the transport equations give the smallest values. The predictions by the
model of Launder]5 show smaller than those by the model of Donaldson et

15 model. The differ-

a].,]6 but larger than those of Wyngaard and Cote's
ences between the predictions become smaller with increasing distance down-
stream from the step.

It is generally seen that the predictions by the algebraic models and the
transport equations have similar trends and the difference between their
predictions becomes smaller in the reattachment and redeveloping regions.
However, the near-wall values of all the models are rather high. It is
possible to treat the near-wall values of <u1uje> through the incorpora-
tion of a suitable low-Reynolds number model in their transport eguations.

But it is not easy to modify the algebraic equations to accommodate this. It

is anticipated that the transport equations of the third moments with a

low-Reynolds number model would be superior to other algebraic correlations.
CONCLUSIONS

The second-and third-order closures for the hydrodynamic characteristics
are extended to the scalar (temperature) field wherein transport equations for
the fluctuating velocity-temperature moments are developed and solved for the
flow over a backward-facing step.

Prediction for <uie> and <uiuje> obtained by solving their transport
equations are compared with algebraic models and the superiority and
potentiality of the transport equations for these double and triple products

are demonstrated.
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FIGURE CAPTIONS

Solution domain -~ Backward-facing geometry with the separating,
recirculation and redeveloping regions.

Skin friction coefficient along the bottom wall downstream on the
step.

Pressure coefficient along the bottom wall downstream of the step.

U-velocity profiles downstream of the step.
<uyu>-profiles downstream of the step.
<vv>-profiles downstream of the step.
<uv>-profiles downstream of the step.
<uuu>-profiles downstream of the step.
<uuv>-profiles downstream of the step.
<uvv>-profiles downstream of the step.
<vyvv>-profiles downstream of the step.
T-profiles downstream of the step.
<ue>-profiles downstream of the step.
<ve>-profiles downstream of the step.
<uue>-profiles downstream of the step.
<uve>-profiles downstream of the step.

<vve>-profiles downstream of the step.
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